212 research outputs found

    Example Based Image Analysis and Synthesis

    Get PDF
    Image analysis and graphics synthesis can be achieved with learning techniques using directly image examples without physically-based, 3D models. In our technique: -- the mapping from novel images to a vector of "pose" and "expression" parameters can be learned from a small set of example images using a function approximation technique that we call an analysis network; -- the inverse mapping from input "pose" and "expression" parameters to output images can be synthesized from a small set of example images and used to produce new images using a similar synthesis network. The techniques described here have several applications in computer graphics, special effects, interactive multimedia and very low bandwidth teleconferencing

    The International Urban Energy Balance Models Comparison Project: First Results from Phase 1

    Get PDF
    A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux

    Hypergraph Learning with Hyperedge Expansion

    Full text link

    Notes on nonnegative tensor factorization of the spectrogram for audio source separation : statistical insights and towards self-clustering of the spatial cues

    Get PDF
    International audienceNonnegative tensor factorization (NTF) of multichannel spectrograms under PARAFAC structure has recently been proposed by Fitzgerald et al as a mean of performing blind source separation (BSS) of multichannel audio data. In this paper we investigate the statistical source models implied by this approach. We show that it implicitly assumes a nonpoint-source model contrasting with usual BSS assumptions and we clarify the links between the measure of fit chosen for the NTF and the implied statistical distribution of the sources. While the original approach of Fitzgeral et al requires a posterior clustering of the spatial cues to group the NTF components into sources, we discuss means of performing the clustering within the factorization. In the results section we test the impact of the simplifying nonpoint-source assumption on underdetermined linear instantaneous mixtures of musical sources and discuss the limits of the approach for such mixtures

    Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces

    Get PDF
    This paper deals with the interactions between biophysical and microclimatic factors on the one hand with, on the other, the urban morphology of intermediate urban open spaces, the relationship between environmental and bioclimatic thermal comfort, and the implementation of innovative materials and the use of greenery, aimed at the users’ well-being. In particular, the thermal comfort of the open spaces of the consolidated fabrics of the city of Rome is studied, by carrying out simulations of cooling strategies relating to two scenarios applied to Piazza Bainsizza. The first scenario involves the use of cool materials for roofs, cladding surfaces, and pavement, while the second scenario, in addition to the cool materials employed in the first scenario, also includes the use of greenery and permeable green surfaces. The research was performed using summer and winter microclimatic simulations of the CFD (ENVI-met v. 3.1) type, in order to determine the dierent influences of the materials with cold colors, trees, and vegetated surfaces on the thermal comfort of the urban morphology itself. Meanwhile, the comfort assessment was determined through the physiological equivalent temperature (PET) calculated with the RayMan program. The first scenario, with the use of cool materials, improves summer conditions and reduces the urban heat island eect but does not eliminate thermal discomfort due to the lack of shaded surfaces and vegetation. The second scenario, where material renovations is matched with vegetation improvements, has a slightly bad eect on winter conditions but drastically ameliorates the summer situation, both for direct users and, thanks to the strong reduction of the urban heat island eect, to urban inhabitants as a whole

    A Survey of Methods for Volumetric Scene Reconstruction from Photographs

    Get PDF
    Scene reconstruction, the task of generating a 3D model of a scene given multiple 2D photographs taken of the scene, is an old and difficult problem in computer vision. Since its introduction, scene reconstruction has found application in many fields, including robotics, virtual reality, and entertainment. Volumetric models are a natural choice for scene reconstruction. Three broad classes of volumetric reconstruction techniques have been developed based on geometric intersections, color consistency, and pair-wise matching. Some of these techniques have spawned a number of variations and undergone considerable refinement. This paper is a survey of techniques for volumetric scene reconstruction

    PERENCANAAN FDD-LTE MENGGUNAKAN FREKUENSI 1800MHZ PADA PERANCANGAN INDOOR BUILDING COVERAGE DI YOGYA KEPATIHAN BANDUNG

    Get PDF
    Material sebuah gedung merupakan salah satu penyebab dari terjadinya fading sehingga menghambat sinyal masuk ke dalam gedung yang mengakibatkan sinyal didalam gedung tersebut lemah. Pada gedung Yogya Kepatihan memiliki masalah terhadap kualitas jaringan didalamnya sehingga butuh dilakukannya perencanaan Indoor untuk mengatasi masalah tersebut. Berdasarkan hasil analisis dilakukannya walk test diperoleh nilai rata-rata dari RSRP sebesar -96 dBm dan SINR sebesar 8 dB, sedangkan drivetest sekitaran Gedung memperoleh hasil RSRP sebesar -72 dBm dan SINR sebesar 5 dB. Penerapan Indoor Building Coverage (IBC) ini menggunakan sistem Distributed Antenna System (DAS) dengan teknik FDD-LTE pita frekuensi 1800 MHz, untuk simulasinya menggunakan Radiowave Propagation Software (RPS) dengan model propagasi Cost-231 Multi-Wall Indoor. Operator Telkomsel menjadi kasus dalam penerapan ini. Walktest di dalam gedung menggunakan Nemo handy, sedangkan drivetest menggunakan GnetTrack Pro. Setelah mendapatkan data lalu dilanjutkan perhitungan capacity planning dan coverage planning sehingga mendapatkan perhitungan untuk jumlah antena yang akan di simulasikan ke dalam software RPS untuk mendapatkan hasil parameter yang sesuai dengan standar Key Performance Indicator (KPI) Operator Telkomsel yaitu RSRP > -85 dBm dan SINR > 10 dB. Dari hasil simulasi ini, diperoleh peningkatan nilai rata-rata RSRP > -76 dBm sebanyak 81,95% dan rata-rata nilai SINR > 26 sebanyak 71,56%. Kata Kunci: LTE, FDD, IBC, DAS, RPS

    Shape description and matching using integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately
    corecore